Sie sind hier:


Professor (I. R.) Dr. Cornelius Friedrich

Curriculum vitae

1966-1970 Study of Microbiology at the University of Göttingen and Organic Chemistry at the University of Gießen
1970 Diploma at the University of Göttingen in the subjects Microbiology, Organic Chemistry and Physiological Chemistry;
1973 Ph.D. at the Faculty of Biology at the University of Göttingen on regulation of  branch point enzyme activities of aromatic acid biosynthesis in a chemotrophic     bacterium (mentor: Prof. H.G. Schlegel)
1973-1974 Postdoc at the Society for ‚Radiation and Environmental Research’ in Göttingen
1975 Stipend of the German Research Foundation (DFG) at MIT, Cambridge, USA,     laboratory of Industrial Microbiology (mentor: Prof. A.L. Demain)
1976 Research Associate at MIT with A.L.Demain
1977-1987 Staff member at the Institute of Microbiology, Göttingen; Tenure as ‘Academic Advisor’ since 1978.
Aug./Sept. 1977 Visiting Scientist Tel-Aviv-University, Israel (with Prof. Yair Aharonowitz).
1986 Habilitation, qualification to teach‚ Microbiology’ at the University of Göttingen
1987 Professor for Microbiology at the Department of Biochemical and Chemical  Engineering of the Berlin Polytech.
1990-2008 Professor, Chair Technical Microbiology at the Faculty of Biochemical and Chemical Engineering, Dortmund University of Technology
Editor Applied Microbiology and Biotechnology
1994-1996 Head of the Department of Chemical Engineering, University of Dortmund
2000-2001 Member Kuratorium Max-Planck-Institut f. molekulare Physiologie, Dortmund.
May/June 2003 Visiting Professor Hoseo University, South Korea (with Prof. Han Bok Kim).
2006 Chair 1st Int. Symposium on Microbial Sulfur Metabolism, Münster, Germany
Chair Gordon Research Conference ‚Molecular Basis of Microbial One-Carbon     Metabolism’ Oxford, UK.

Research interests

  • Microbial physiology. Growth, mass cultivation of chemotrophic hydrogen-oxidizing bacteria with highly reactive gas mixtures, of methylotrophic bacteria and of acidophilic and neutrophilic sulfur-oxidizing bacteria.
  • Enzymology: Key enzymes of the aerobic hydrogen-oxidizing bacterium Ralstonia eutropha: Regulation of hydrogenase and ribulosebisphosphate carboxylase formation. Identification of nickel
    as an essential metal for its activity.
  • Development of a genetic system for useful acidophilic bacteria.
    Biological waste gas treatment to eliminate high organic loads from industrial waste gases.
  • Bacterial sulfur oxidation: Analysis of the proteins involved and development of the reaction cycle. Identification of protein function and abundance in sulfur-oxidizing bacteria.

Selected publications

  • Quentmeier, A., L. Lin Li and C. G. Friedrich. 2008. Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus.  FEBS Lett., 582, 3701-3704.
  • Rother, D., J. Ringk, and C.G. Friedrich. 2008. Sulfur oxidation of Paracoccus pantotrophus: The sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Microbiology, 154, 1980-1988.
  • Quentmeier, A., P. Janning, P. Hellwig, and C. G. Friedrich. 2007. Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to  conformational changes and SoxY-Y interprotein disulfide formation. Biochemistry  46, 10990-10998.
  • Friedrich, C. G., F. Bardischewsky, D.  Rother, A. Quentmeier, and J. Fischer. 2005. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8: 253-259.
    Quentmeier, A., and C. G. Friedrich. 2001. The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett. 503:168-172.
  • Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001.  Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a  common mechanism ? Appl. Environ. Microbiol. 67:2873-2882.
  • Wübker, S.-M., A. Laurenzis, U. Werner, and C.G. Friedrich. 1997. Controlled  biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with periodically moved trickle-bed. Biotechnol. Bioeng. 55: 688-692.
  • Quentmeier, A., and C.G.Friedrich. 1994. Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. Appl. Environ. Microbiol. 60:973-978.
  • Oelmüller, U., H. G. Schlegel, and C. G. Friedrich. 1990. Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases. J. Bacteriol. 172: 7057-7064.
  • Chandra, T. S., and C. G. Friedrich. 1986. Tn5-induced mutations affecting sulfur oxidizing ability (Sox) of Thiosphaera pantotropha. J. Bacteriol. 166: 446-452. 
  • Friedrich, C. G., K. Schneider, and B. Friedrich. 1982. Nickel in the catalytically active hydro¬genase of Alcaligenes eutrophus. J. Bacteriol. 152: 42-48.
  • Friedrich, C. G.1982. Derepression of hydrogenase during limitation of electron donors and de¬repression of ribulosebis¬phos¬phate carboxylase during carbon limitation of Alcaligenes eutrophus.      J. Bacteriol. 149: 203-210.
  • Friedrich, C .G., and G. Mitrenga. 1981. Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10: 209-212.
  • Aharonowitz, Y., and C. G. Friedrich. 1980. Alanine dehydrogenase of the ß-lactam antibiotic producer Streptomyces clavuligerus. Arch. Microbiol. 125: 137-142.
  • Friedrich, C. G., and A. L. Demain. 1977. Homocitrate synthase as the crucial site of the lysine effect on penicillin biosynthesis. J. Antibiotics 30: 760-761.
  • Friedrich, C. G.,  B. Friedrich,  and H. G. Schlegel. 1976. Regulation of chorismate mutase prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus. J. Bacteriol. 126: 723-732.